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Abstract—This letter develops a new direction-of-arrival
(DOA) estimation method for mixed coherent and uncorrelated
signals through the reconstruction of a set of Toeplitz matrices.
More specifically, Toeplitz matrices are formed by utilizing the
rows and columns of the covariance matrix, and their average
is used by subspace-based algorithms to effectively estimate
the signal DOAs. Compared to existing methods, the proposed
approach provides a high number of degrees of freedom and
requires a low computation complexity.

Index Terms—Direction of arrival estimation, Toeplitz matrix
reconstruction, mixed coherent and uncorrelated signals.

I. INTRODUCTION

D IRECTION-of-arrival (DOA) estimation is an important

area of research in array signal processing applied to

radar, sonar, and wireless communications [1]–[6]. Among

the various methods developed for DOA estimation, subspace-

based approaches, such as the MUltiple SIgnal Classification

(MUSIC) [7] and Estimation of Signal Parameters via Rota-

tional Invariance Techniques (ESPRIT) [8], are popularly ex-

ploited due to their capability to achieve high-resolution DOA

estimation with a low complexity. Leveraging the eigenstruc-

ture of the covariance matrix of the sensor array output, these

methods are most effective when all the impinging signals are

uncorrelated and, as a result, the yielding covariance matrix

is full rank. However, in real-world applications, we often

encounter coherent signals that may arise due to phenomena

such as multipath propagation in wireless communications as

well as low-angle reflection in radar sensing [9], [10]. In such

cases, the obtained covariance matrix becomes rank-deficient

and, as a result, direct application of the subspace-based DOA

estimation methods becomes infeasible.

Several methods have been developed to decorrelate co-

herent signals and restore the rank of the covariance matrix.

Among them, the well-known spatial smoothing method par-

titions the array into multiple overlapping subarrays and aver-

ages the covariance matrices over these subarrays to construct

a full-rank covariance matrix [11]. The main drawback of this

approach is that the number of degrees of freedom (DOFs) is

limited to approximately half of the number of sensors. In [12],

the forward-backward spatial smoothing technique was devel-

oped to increase the number of DOFs to approximately two-
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thirds of the number of sensors. By forming a Toeplitz coveri-

ance matrix, a computationally efficient method was developed

in [13] to estimate the signal DOAs without performing spatial

smoothing. However, similar to the spatial smoothing, the

number of resolvable signals remains approximately half of

the number of sensors. This method is further improved by

increasing the dimension of the signal subspace in [14] by

utilizing both forward and backward vectors lying in the signal

subspace. Two methods are developed based on this concept,

namely, the eigenvector method (EVM) and the correlation

vector method (CVM), to obtain the forward and backward

vectors. These approaches achieve a similar number of DOFs

as the forward-backward spatial smoothing. This decorrelation

concept is extended to two-dimensional sparse arrays in [15],

where the four-dimensional covariance tensor is decorrelated

by exploiting a particular slice from the covariance tensor and

rearranging it in a Toeplitz fashion. In [16], a DOA estimation

method based on maximum likelihood (ML) estimation is

developed, exhibiting robust performance even in the presence

of coherent signals. This method is further extended to sparse

arrays [17], showing the capability of detecting more sources

than the number of sensors in a sparse array.

Detecting a mixture of coherent and uncorrelated signals

can be even more challenging. Such problem is considered

for uniform linear arrays (ULAs) in [18] by first detecting the

uncorrelated sources using subspace-based algorithms, such as

MUSIC, and the symmetric array configuration is exploited

to remove their contribution from the data covariance matrix,

leaving only the coherent components. This coherent covari-

ance matrix is then decorrelated by constructing a Toeplitz

matrix [13], enabling the estimation of the coherent sources.

In [19], DOA estimation of mixed coherent and uncorrelated

signals is addressed within a multiple-input multiple-output

(MIMO) radar framework. In this approach, both the transmit

and receive arrays are sparse ULAs forming a coprime sum

coarray. The DOAs of the coherent signals are estimated using

complex Bayesian compressive sensing techniques [20].

In this letter, we develop a new DOA estimation method

for mixed coherent and uncorrelated signals by exploiting

multiple rows and columns of the rank-deficient covariance

matrix to construct a set of Toeplitz matrices. The average

of these matrices exhibits a Toeplitz-Hermitian property and

recovers the full rank of the covariance matrix. The resulting

decorrelated covariance matrix is then utilized to detect mixed

coherent and uncorrelated sources using subspace-based DOA

estimation methods. The proposed methods can resolve more

sources than spatial smoothing [11], Toeplitz reconstruction-

based methods [13], and their associated forward-backward
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variances [12], [14]. This method also provides comparable

performance to the ML-based approach [16] but with signifi-

cantly lower computational costs.

Notations: We use bold lower-case (upper-case) letters to

describe vectors (matrices). Specifically, IL represents the

identity matrix of size L × L, and 0L and 1L denote L × 1
vectors consisting of all zero elements and all one elements,

respectively. (·)T, (·)∗ and (·)H respectively indicate the

transpose, conjugate, and conjugate transpose (Hermitian) of

a matrix or a vector. triu(·) denotes the upper triangular ele-

ments of a matrix, whereas tril(·) denotes the lower triangular

elements with the diagonal elements excluded. Furthermore,

symbols ◦, ⊘, (·)◦m denote the element-wise (Hadamard)

product, division, and the mth power, respectively. The symbol

j =
√
−1 represents the unit imaginary number and ⌊·⌋

denotes the floor operation. Finally, E(·) denotes the statistical

expectation, diag(·) and bdiag(·) respectively represent the

construction of a diagonal matrix and a block-diagonal matrix,

and δm,k denotes the Kronecker delta function.

II. SIGNAL MODEL

Consider a ULA consisting of M omnidirectional sensors,

and P far-field narrowband signals impinge on the array from

DOAs θ = [θ1, θ2, · · · , θP ]T. Among them, the first L signals

exhibit mutual coherence, while the remaining P − L signals

are uncorrelated with each other and with the coherent group.

The signal vector received at time t can be expressed as

x(t) = s1(t)

L
∑

i=1

αia(θi) +

P
∑

i=L+1

si(t)a(θi) + n(t)

= Acsc(t) +Ausu(t) + n(t) = As(t) + n(t),

(1)

where a(θi) = [1, e−j 2π

λ
d sin θi , · · · , e−j 2π

λ
(M−1)d sin θi ]T ∈

C
M×1 is the steering vector associated with DOA θi,

A = [a(θ1), · · · ,a(θP )] ∈ C
M×P is the array mani-

fold matrix with Ac = [a(θ1), · · · ,a(θL)] and Au =
[a(θL+1), · · · ,a(θP )] respectively representing the array man-

ifold matrices for the coherent and uncorrelated sources,

s(t) = [s1(t), s2(t), · · · , sP (t)]T ∈ C
P×1 is the signal

waveform vector, and n(t) ∼ CN (0, σ2
nIM ) is the additive

white Gaussian noise vector. The waveforms of the coherent

signals are identical to the reference signal s1(t) up to a scalar

coefficient αi, i.e., si(t) = αis1(t), for 1 ≤ i ≤ L.
The covariance matrix of the received signal vector x(t)

can be expressed as

R = E[x(t)xH(t)] = ARsA
H + σ2

nIM

= AcRcA
H
c +AuRuA

H
u + σ2

nIM ,
(2)

where Rc and Ru are the source covariance matrices for

coherent and uncorrelated signals, respectively, and Rs =
bdiag(Rc,Ru) represents the source covariance matrix for the

mixed signals. Due to the correlation assumption, the source

covariance matrices Rc and Ru can be expressed as

Rc = σ2
1αα

H (3)

and

Ru = diag
(

[σ2
L+1, · · · , σ2

P ]
)

, (4)

where σ2
i is the signal power of the ith signal and α =

[α1, α2, · · · , αL]
T denotes the complex attenuation vector for

the coherent signals. The (m, k)th element of R is given as

R(m, k) =E

{[

s1(t)

L
∑

i′=1

αi′am(θi′) +

P
∑

i′=L+1

si′(t)am(θi′)

]

·
[

s∗1(t)
L
∑

i=1

α∗

i a
∗

k(θi) +
P
∑

i=L+1

s∗i (t)a
∗

k(θi)

]}

+ σ2
nδm,k

(5)

for m, k ∈ [0, 1, · · · ,M − 1], where am(θ) denotes the mth

element of the steering vector a(θ). Considering that

E[si(t)s
∗

i′(t)] =











σ2
1 , i = i′ = 1,

σ2
i , i = i′ 6= 1,

0, i 6= i′,

(6)

we have

R(m, k) = σ2
1

L
∑

i′=1

αi′am(θi′)

L
∑

i=1

α∗

i a
∗

k(θi)

+

P
∑

i=L+1

σ2
i am(θi)a

∗

k(θi) + σ2
nδm,k

=
P
∑

i=1

dm,ie
j 2π

λ
dk sin θi + σ2

nδm,k,

(7)

where

dm,i =

{

σ2
1α

∗

i

∑L
i′=1 αi′e

−j 2π

λ
dm sin θ

i′ , i = 1, 2, · · · , L,
σ2
i e

−j 2π

λ
dm sin θi , i = L+ 1, · · · , P.

(8)

III. DOCORRELATION OF THE COVARIANCE MATRIX

Due to the presence of cross-correlations between the co-

herent sources, as evident from Eq. (7), the covariance matrix

R exhibits a rank deficiency problem and loses its Toeplitz

structure. As a result, applying subspace-based methods di-

rectly to R cannot resolve the coherent sources. To address

this issue, we develop an effective decorrelation technique to

decorrelate the covariance matrix and recover its full rank.

Consider a vector rm = [rm(−(M−1), · · · , rm(M−1)]T,

whose elements are arranged from the elements in the mth

row and the mth column of the covariance matrix R, i.e.,

rm=
[

0
T
m (RT(m :M − 1,m)J) (R(m,m+1:M−1)) 0T

m

]T

∈ C
2M−1,
(9)

where J is an exchange matrix containing ones in the antidi-

agonal and zeros elsewhere. Such vectors are arranged in the

following way to obtain a Toeplitz matrix,

R̃(m) =











rm(0) rm(1) · · · rm(M − 1)
rm(−1) rm(0) · · · rm(M − 2)

...
...

. . .
...

rm(1−M) rm(2−M) · · · rm(0)











= triu(AE
◦m

D(m)AH) + tril(A(E◦m)HDH(m)AH),
(10)
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(a) Proposed method.
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(b) Methods [14] and [16]

Fig. 1: DOA estimation results of 18 uncorrelated and 3

coherent sources. The red crosses represent the estimated

DOAs using the method in [14].

where D(m) = diag(dm,1, · · · , dm,P ) and E =
diag(ej

2π

λ
d sin θ1 , · · · , ej 2π

λ
d sin θP ). Another vector c is con-

structed which contains the occurrence of a correla-

tion corresponding to a particular lag as c(m) =
[

0
T
m 1

T
2M−2m−1 0

T
m

]T
. We obtain matrix C(m) by arranging

the vector c(m) similar to (10). The matrices R̃(m) for

m = 1, · · · , (M − 1)/2 are averaged to obtain matrix R̃ as

R̃ =





(M−1)/2
∑

m=0

R̃(m)



⊘





(M−1)/2
∑

m=0

C(m)



 . (11)

It is noted that the rank of the noise-free Hermitian Toeplitz

matrices R̃(m) is P , since both AE
◦m

D(m)AH and

AE
◦m

D(m)AH are of rank P . Therefore, each of R̃(m)’s
has P nonzero eigenvalues. Let λp(m) be the pth nonzero

eigenvalue of R̃(m) when ordered in ascending order, and

let λ̃p be the pth nonzero eigenvalue of
∑(M−1)/2

m=0 R̃(m)
when ordered in ascending order. Then, according to Weyl’s

inequality [21], for these Hermitian matrices, we have

λ̃p ≥
(M−1)/2
∑

m=0

λp(m) 6= 0. (12)

Therefore, the term
∑(M−1)/2

m=0 R̃(m), and hence R̃, has at

least P nonzero eigenvalues. As a result, rank(R̃) ≥ P , i.e.,

the Toeplitz Hermitian matrix R̃ recovers the full rank of the

covariance matrix. Additionally, since the number of rows in

A is M , P can be at most M − 1 for DOA estimation using

subspace-based methods, such as the MUSIC algorithm.

In comparison, the methods developed in [13], [14] decorre-

late the covariance matrix by reconstructing a single Toeplitz

matrix. [13] utilizes one row of the covariance matrix. As

such, the dimension of A is reduced by half, thus only

detecting at most ⌊(M + 1)/2⌋ sources. [14] utilizes the

primary eigenvector corresponding to the largest eigenvalue. It

considers the forward vector, which is the primary eigenvector,

and a backward vector, which is its flipped and conjugated

form. Two Toeplitz matrices are obtained from the forward

and backward covariance matrices, and the final decorrelated

matrix is the concatenation of these two matrices. This method

can detect at most ⌊2M/3⌋ sources.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

The computation of the decorrelated covariance matrix R̃

can be decomposed into the following steps.
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(a) Proposed method
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(b) Methods [14] and [16]

Fig. 2: DOA estimation results of 15 uncorrelated and 3

coherent sources.
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(b) Methods [14] and [16]

Fig. 3: DOA estimation results of 13 uncorrelated and 5

coherent sources.

1) Construction of rm: This involves flipping and con-

catenation of vectors. It does not require any matrix

multiplication.

2) Construction of R̃(m) : Reshaping rm into a Toeplitz

matrix R̃(m) does not require any additional arithmetic

operations [22].

3) Construction of R̃ : To construct R̃, there are (M−1)/2
additions for R̃(m) and (M − 1)/2 additions for C(m),
and their element-wise division, requiring a complexity

of O((M − 1)2).

Compared to the ML-based approach developed in [16], the

proposed approach results in significantly lower computational

complexity. In [16], the alternating direction method of mul-

tipliers (ADMM) is used to solve a reformulated ML-based

estimation problem. The overall algorithm consists of No outer

loops for the majorization maximization algorithm and Ni

inner loops for the 5 update equations in the ADMM algo-

rithm. Each inner loop requires a computational complexity

of O(M3). Therefore, the total complexity is O(NoNiM
3),

which is much higher than that of the proposed algorithm.

On the other hand, the ESPRIT-based method with forward-

backward vectors (EFBV) requires a lower complexity of

O(M) [14], but the number of DOFs is lower compared to

the other two methods.
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(b) ρ = 0.6

Fig. 4: DOA estimation results of 18 partially correlated

sources.
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Fig. 5: Performance comparison.

V. SIMULATION RESULTS

We consider a ULA consisting of M = 25 sensors to

estimate the DOAs in a mixed coherent and uncorrelated signal

scenario. We compare the proposed method with the EFBV

[14] and the ML-based estimation via sequential ADMM

(MESA) [16] in terms of the number of DOFs and DOA

estimation performance.

We first consider a high number of sources which is close

to the number of sensors. In Fig. 1, 21 sources are considered.

Among them, 18 sources are uncorrelated with DOAs −60◦,
−54◦, −42◦, −36◦, −30◦, −24◦, −12◦, −6◦, 0◦, 6◦, 12◦, 18◦,

30◦, 36◦, 42◦, 48◦, 54◦, 60◦, whereas 3 sources with DOAs

−48◦, −18◦, 24◦ exhibit mutual coherence. The attenuation

factors α are sampled from a complex Gaussian distribution

as α ∼ CN (0, IL). The input signal-to-noise ratio (SNR) is

10 dB, and 100 snapshots are considered. Fig. 1(a) verifies

that the proposed method successfully detects all sources.

Note that, the method in [14], which is based on Toeplitz

matrix reconstruction using forward and backward vectors, can

resolve at most ⌊2M/3⌋ = 16 sources and thus fails to detect

the 21 sources as evident from the red crosses depicted in

Fig. 1(a). The DOA estimation performance based on [16]

is depicted in Fig. 1(b), where one of the coherent sources is

undetected. The proposed approach provides a similar number

of DOFs and more robust performance compared to [16],

particularly when the number of coherent sources is high. We

illustrate this by considering 18 mixed sources. As shown

in Fig. 2, for 3 coherent sources, both approaches detect

all signals successfully. However, as the number of coherent

sources increases to 5, as shown in Fig. 3, one of the coherent

sources detected using [16] becomes slightly off from its true

DOA. EFBV does not perform well in this case either, since

the number of sources is higher than the number of DOFs

offered by the EFBV.

In addition to the fully coherent case, the proposed model

also works for partially correlated sources as well. In Fig. 4,

we consider the same 18 sources with correlation coefficients

ρ = 0.3 and ρ = 0.6. The figure clearly shows that the

proposed method resolves all partially correlated sources.

Fig. 5(a) compares the root mean-squared error (RMSE)

performance with respect to the input SNR for the considered

approaches. The RMSE is calculated as

RMSE =

√

√

√

√

1

QP

Q
∑

q=1

P
∑

p=1

(

θp − θ̂p,q

)2

, (13)

where Q is the number of Monte Carlo trials. In this example,

14 mixed sources are considered, 11 of them being uncor-

related with DOAs −55◦, −50◦, −40◦, −35◦, −25◦, −20◦,

−5◦, 0◦, 10◦, 15◦, and 20◦. The remaining 3 sources are coher-

ent with DOAs 30◦, 45◦, and 44◦. 500 trials are performed for

each input SNR to compute the RMSE value. From Fig. 5(a),

it is evident that the proposed method provides significantly

better performance than [14] and similar performance to [16].

Fig. 5(b) compares the RMSE performance with respect to the

number of snapshots. In this case, the input SNR is fixed at 10
dB, and the number of snapshots are varied between 50 and

150. In this case, both the proposed method and the MESA

method exhibit similar performance.

To study the robustness, we perform 500 trials as the input

SNR varies between −20 dB and 20 dB for a total 14 sources,

11 of which are uncorrelated and the other 3 are mutually

coherent. In each trial, the DOAs are randomly generated

from a uniform distribution between −60◦ and 60◦. A DOA

is labeled misdetected if the absolute estimation error is larger

than 1◦, i.e.,

Dq,p =

{

1, |θq − θ̂q,p| ≥ 1◦,

0, otherwise,
(14)

where Dq,p = 1 indicates the misdetection of the pth source

in the qth trial. Therefore, the number of misdetection per trial

is obtained as

ND =
1

Q

Q
∑

q=1

P
∑

p=1

Dq,p. (15)

Fig. 5(c) depicts a negligible number of misdetection obtained

from the proposed model when the input SNR is higher than

−10 dB. The number of snapshots is considered to be 500.

Fig. 5(d) illustrates the number of misdetections versus the

number of sources for the proposed method. The figure shows

that, even with 20 sources, the proposed approach detects them

effectively, with fewer than 1 average missed detection over

500 trials for input SNRs higher than −8 dB. This confirms

that the proposed approach can detect more sources than those

in [11], [13], which can detect a maximum of 13 sources, and

[12], [14], which can detect up to 16 sources.

VI. CONCLUSION

In this letter, we addressed the issue of DOA estimation in

a mixed coherent and uncorrelated signal scenario. Compared

to existing methods based on spatial smoothing and Toeplitz

matrix reconstruction, the proposed approach can achieve a

higher number of DOFs. Additionally, the proposed approach

provides performance similar to the ML-based approach but

with significantly lower computational complexity.



5

REFERENCES

[1] D. H. Johnson, Array Signal Processing: Concepts and Techniques.
Prentice-Hall, 1993.

[2] H. L. Van Trees, Optimum Array Processing: Part IV of Detection,

Estimation, and Modulation Theory. Wiley, 2002.

[3] T. E. Tuncer and B. Friedlander, Classical and Modern Direction-of-

Arrival Estimation. Academic Press, 2009.

[4] M. G. Amin, X. Wang, Y. D. Zhang, F. Ahmad, and E. Aboutanios,
“Sparse array and sampling for interference mitigation and DOA esti-
mation in GNSS,” Proc. IEEE, vol. 104, no. 6, pp. 1302–1317, June
2016.

[5] S. Sun, A. P. Petropulu, and H. V. Poor, “MIMO radar for advanced
driver-assistance systems and autonomous driving: Advantages and
challenges,” IEEE Signal Process. Mag., vol. 37, no. 4, pp. 98–117,
2020.

[6] S. Sun and Y. D. Zhang, “4D automotive radar sensing for autonomous
vehicles: A sparsity-oriented approach,” IEEE J. Sel. Topics Signal

Process., vol. 15, no. 4, pp. 879–891, 2021.

[7] R. Schmidt, “Multiple emitter location and signal parameter estimation,”
IEEE Trans. Antennas Propag., vol. 34, no. 3, pp. 276–280, 1986.

[8] R. Roy and T. Kailath, “ESPRIT–estimation of signal parameters via
rotational invariance techniques,” IEEE Trans. Acoust. Speech signal

process., vol. 37, no. 7, pp. 984–995, 1989.

[9] T.-J. Shan, M. Wax, and T. Kailath, “On spatial smoothing for direction-
of-arrival estimation of coherent signals,” IEEE Trans. Acoust. Speech

signal process., vol. 33, no. 4, pp. 806–811, 1985.

[10] I. Ziskind and M. Wax, “Maximum likelihood localization of multiple
sources by alternating projection,” IEEE Trans. Acoust. Speech signal

process., vol. 36, no. 10, pp. 1553–1560, 1988.

[11] J. E. Evans, J. R. Johnson, and D. Sun, “Application of advanced signal
processing techniques to angle of arrival estimation in ATC navigation
and surveillance systems,” Massachusetts Institute of Technology, Lin-
coln Laboratory, Tech. Rep., Cambridge, MA, 1982.

[12] S. U. Pillai and B. H. Kwon, “Forward/backward spatial smoothing
techniques for coherent signal identification,” IEEE Trans. Acoust.,

Speech, Signal Process., vol. 37, no. 1, pp. 8–15, 1989.

[13] F.-M. Han and X.-D. Zhang, “An ESPRIT-like algorithm for coherent
DOA estimation,” IEEE Antennas Wireless Propagat. Lett., vol. 4, pp.
443–446, 2005.

[14] Y.-H. Choi, “ESPRIT-based coherent source localization with forward
and backward vectors,” IEEE Trans. Signal Process., vol. 58, no. 12,
pp. 6416–6420, 2010.

[15] S. R. Pavel, Y. D. Zhang, S. Sun, and A. L. de Almeida, “Tensor
reconstruction-based sparse array 2-D DOA estimation of mixed coher-
ent and uncorrelated signals,” in Proc. IEEE Int. Conf. Acoust., Speech,

Signal Process. (ICASSP), Seoul, Korea, 2024, pp. 12 876–12 880.

[16] Z. Yang and X. Chen, “Maximum likelihood direction-of-arrival estima-
tion via rank-constrained ADMM,” in Proc. 2021 CIE Int. Conf. Radar,
Haikou, China, 2021, pp. 2376–2380.

[17] X. Chen and Z. Yang, “Localizing more sources than sensors in presence
of coherent sources,” in Proc. 2022 IEEE Int. Conf. Acoust., Speech,

Signal Process. (ICASSP), Singapore, 2022, pp. 5013–5017.

[18] X. Xu, Z. Ye, Y. Zhang, and C. Chang, “A deflation approach to direction
of arrival estimation for symmetric uniform linear array,” IEEE Antennas

Wireless Propagat. Lett., vol. 5, pp. 486–489, 2006.

[19] S. Qin, Y. D. Zhang, and M. G. Amin, “DOA estimation of mixed
coherent and uncorrelated targets exploiting coprime MIMO radar,”
Digital Signal Process., vol. 61, pp. 26–34, 2017.

[20] Q. Wu, Y. D. Zhang, M. G. Amin, and B. Himed, “Complex multitask
bayesian compressive sensing,” in Proc. 2014 IEEE Int. Conf. Acoust.,

Speech, Signal Process. (ICASSP), 2014, pp. 3375–3379.

[21] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University
Press, 2012.

[22] C.-L. Liu and P. Vaidyanathan, “Remarks on the spatial smoothing step
in coarray MUSIC,” IEEE Signal Process. Lett., vol. 22, no. 9, pp.
1438–1442, 2015.


	Introduction
	Signal Model
	Docorrelation of the covariance matrix
	Computational Complexity analysis
	Simulation Results
	Conclusion
	References

